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PREFACE 

This report describes a course of investigation that was pursued by 
the author while searching for an efficient method for estimating 
weighting factors to be employed in the adjustment of leveling net
works. After the report had been prepared for publication, it was 
brought to the author's attention that the method described herein 
had already been published by Forstner (l979a and l979b> and the 
convergence of iterated MINQUE and Forstner's estimator to the same 
estimates had been proven by Schaffrln <1983>. Since all three of 
these references are in German, NGS decided to publish this report in 
its original form, with this explanatory note and the inclusion of 
these three references. 
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A VARIANCE COMPONENT ESTIMATION METHOD 
FOR SPARSE MATRIX APPLICATIONS 

James R. Lucas 
National Geodetic Survey 

Charting & Geodetic Services. National Ocean Service 
National Oceanic and Atmospheric Administration 

Rockville. Md. 20852 

ABSTRACT. Methods for estimating variance com
ponents from the observation data used in a least 
squares adjustment are becoming important in geod
esy because of the variety of data that need to be 
combined into a single adjustment. Unbiased esti
mators of the MINQUE <Minimum Norm Quadratic Un
biased Estimation> type have received the most 
attention. but these estimators have some short
comings that make them unattractive in certain 
applications. In particular. they require the full 
inverse of the least squares normal equation
matrix. thus limiting the use of sparse matrix 
methods so common to geodesy. This report proposes 
an iterative estimation method. which may not be 
unbiased. but produces reliable estimates in con
trolled numerical tests and is compatible with 
sparse ~atrix adjustments. Some results are pre
sented which compare this estimator with MINQUE and 
iterated MINQUE when applied to a particular 
adjustment problem. 

INTRODUCTION 

In recent years the geodetic community has become increasingly 
interested in methods of estimating variance components. This inter
est has been stimulated. in part. by a continually expanding need to 
merge into a single adjustment observations acquired by a variety of 
instrument systems. There is also a requirement for combining obser
vation data acquired many years. or even decades. ago with modern 
observations in order to determine crustal motions. Since the tech
nology employed in acquiring observations has been far less static 
than the quantities being observed. and the displacements are of 
about the same order of magnitude as observation errors. the weights 
assigned to these data must be chosen carefully. Estimation of compo
nents of variance from the observation data is one of the avenues 
being explored in an attempt to develop more realistic weighting 
factors for geodetic adjustments. 
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At the National Geodetic Survey CNGS>, numerical investigations into 
variance component estimation were begun by the author using HINQUE, 
as proposed by C. R. Rao Cl97la>. This method was tested in several 
different types of adjustments and found to produce estimates that 
were quite adequate. It seemed reasonable to assume, however, that 
HINQUE should be initiated with the best available estimates, even if 
those estimates were obtained from a previous HIN~UE. This led to 
experimentation with iterated HINQE, so designated by Rao because the 
property of unbiasedness may be lost in the iteration process. If 
such losses did occur, they did not appear to contaminate the esti
mates, which improved substantially in most cases. 

Prior to these numerical tests, a simpler estimation method had been 
derived by a colleague, Allen J. Pope. This proved to be an indepen
dent derivation of AUE <Almost Unbiased Estimation> proposed by Horn 
et al. Cl975>, but Pope had the foresight to suggest that iterated AUE 
and iterated MINQE should converge to the same set of estimates, 
though by different paths. His prediction was found to be correct, 
but we have been unsuccessfull. so far. in formulating a general 
statement of the conditions for which it is true. 

Iterated AUE requires only a fraction of the computer storage con
sumed by HINQUE, and far less computation than iterated HINQE, even 
though it usually requires more iterations to converge to the same 
degree of approximation. Its primary advantage to geodesists, how
ever, is its compatibility with the sparse matrix techniques generally 
used in geodetic adjustments. HINQUE and, therefore, iterated HINQE 
are computed from the full inverse of the least squares normal equa
tion coefficient matrix. If no advantage is gained from the sparse 
systems of equations encountered in geodesy, then MINQUE estimates are 
very expensive to compute. 

HINQUE 

C. R. Rao Cl97la, 197lb, 1972> provides a thorough and elegant 
derivation of HINQUE. He begins with the assumption that a linear 
function of the variance components in a general linear model can be 
estimated from a quadratic function in the observables. He then 
proceeds to show that minimization of a particular matrix norm. em
ploying the constraints of unbiasedness and invariance with respect to 
translations of the parameter vector. leads to a set of estimating 
equations that ls HINQUE. 

The following paragraphs are included to provide some of the back
ground for HINQUE and to establish a set of notation, which ls differ
ent from that used by Rao. It is hoped that this material will 
provide sufficient background information for those readers not famil
iar with variance component estimation methods. However, it is recom
mended that such readers, with more than a casual interest in the 
subject, refer to one or more of the excellent papers by C. R. Rao. 
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Consider the linear model 

Y = AX + ur 
(1 ) 

where Y is an n vector of observations. A is a given n by p matrix. 

X is a p vector of unknown parameters. Ui is a given n by ci matrix. 

and ri is a c vector of random errors such that
1 

Ecri> = o 

Ecr 1 r 1 
T> 2 I (2)= al 

E<r. r T> 0 (l 
l j = - j) 

2where Els the expected value operator. and the a. are unknown varl-
1 

ance components to be estimated along with the parameter vector X. 

From eqs. <1> and <2> the expectation of Y is AX and its dispersion 

matrix ls 

2DCY> = 01 v1 + • • • + 

where 
T

vi = ui ui . 
2 2Let a be an a priori estimate of a • In the unusual case of com-1 1 

plete ignorance of even the magnitudes of the variance components. we 

can let all a priori estimates be unity. In either case. the weight 

matrix 

where 

(3) 
and 

Hl =al 
2 vi 

ls used to obtain the least squares estimate for the unknown para-

meters 
X= <AT W A>-l AT W Y 

= N-l AT .w Y ( 4) 

and the matr-ix 

(5) 
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From eq. (5) it can be seen that RA = 0 and, therefore, 

RY = RCAX + UJ> = RUJ. <6> 

With this result, we can construct k equations of the form 

E<YT R vi R Y> = E<JT UT R vi R u r> 

2 T= tr<U 1 R Vi R U1> + • a 1 

+ ak 2 tr<UkT R V1 R Uk> 

= 2 trCR Vi R V1> + •••a 1 
2 

+ Ok tr<R vi R Vk> (7) 

where tr denotes the trace of the matrix or matrix products. Hence an 
unbiased estimate of the variance components vector can be obtained 
from 

S a = q (8) 

where 
s 1 j = tr<R v 1 R vj> 

ql = yT R vl RY 
and the result ls MINQUE of the variance components. 

ALTERNATIVE ESTIMATORS 

There are three def lclencies of MINQUE which may be important in 
particular problems: 1> MINQUE sometimes produces variance component 
estimates that are negative, 2> the S matrix of eq. <8> may be singu
lar in some problems, and 3) MINQUE is expensive to compute for large 
adjustment problems. 

Negative estimates may be valuable in the investigation of random 
error sources of a class of adjustments. If variance component esti
mates are obtained from many sets of observation data to compute a set 
of means, then negative estimates may be meaningful contributions to 
the means, but in terms of a particular adjustment the occurrence of 
negative estimates creates a troubl~some situation. It has been 
suggested that the negative estimates be replaced by zero or by small 
positive quantities, based on the assumption that the true values are 
insignificantly different from zero. 

Rao and Kleffe (1979> treat the possibility of negative estimates in 
an investigation of MINQECU,D>--minimum norm estimators that are both 
unbiased and non-negative definite. They conclude that such estimators 
exist for some cases, but not the general problem, which explains why 
estimators which avoid the deficiencies of MINQUE are derived by 
dropping or relaxing the condition of unbiasedness. 
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The third deficiency, the cost in computer time and storage of 
obtalnlng HINQUE for very large observation sets, ls perhaps the most 
important in geodetic applications. The matrix R is of order n, the 
number of observations, and constructing it explicitly requires all 
elements of the inverse of the least squares normal equation matrix. 
In most geodetic adjustments the normal equations are sparse, and this 
sparseness is exploited in covariance propagation so that only a small 
subset of the elements of the inverse need be computed. Hence, compu
ting the full inverse, forming the matrix R, and evaluating the traces 
of a number of matrix products <that contain R twice> adds a tremen
dous amount of computation to an already large adjustment problem. 

Horn et al. <1975> propose an estimator that they call AUE CAl1ost 
Unbiased Estimator>, which avoids the deficiencies of MINQUE and is 
unbiased, provided that the a priori estimates are proportional to the 
true variances. Considered in terms of practical applications, this 
condition seems to create a paradox. Seldom, if ever, will this 
condition be satisfied in a practical application and, if it were, the 
need for variance component estimates would have vanished because the 
proportionality factor can be estimated as a variance of unit weight. 
The authors point out, however, that the bias introduced by failure to 
meet this condition can be expected to be small. Hence, the appella
tion •almost unbiased.· 

2 2If = f for all i, then a slight modification of <7> producesa 1 a 1 

(9) 

From the definition of R, eq. (5), it can be seen that the product RH 
is an idempotent matrix. Hence, RHR =Rand tr<R Vi RH> = tr<R Vi>' 
which produces the estimator 

(10) 

which ls AUE. 

The denominator in eq. ClO> is the sum of all elements in the i-th 
row <or column> of S, each of which has the form 

T T
tr<R vi R vj> = tr<R ui R uj uj >u 1 

T T T = tr[(Ui R Uj><u, R Uj) ] 

which ls a sum-of-squares. Hence, all elements of S are non-negative 
and eq. <lO> ls a non-negative estimator of the variance components. 
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AUE is biased for all practical applications, though this bias may 
be small if the a priori values are approximately proportional to the 
true variance. It can be shown that AUE tends to produce estimates 
that are somewhere between the true variances and the mean of the true 
variances, i.e., large variance components are underestimated while 
small ones are overestimated. 

ITERATIVE ESTIMATION 

Although MINQUE provides an unbiased estimate of the variance com
ponents, MINQUE is not unique in that the estimates are subject to 
some variation depending upon the prior values. This dependence on 
prior values leads to some lack of confidence in estimates that are 
significantly different from the a priori values. Would better ini
tial approximations produce better estimates? If MINQUE estimates are 
used to initiate a second MINQUE, will the results be closer to the 
true variance? 

Rao (1972> suggests the possibility of iterating MINQUE, but warns 
that the property of unbiasedness will usually be lost. He concedes 
that such estimates may have other interesting properties which have 
yet to be investigated. 

Iteration raises some difficult questions for the theoretician. 
Conditions under which the iteration converges must be explored, and 
the bias Cor lack thereof> is much more difficult to access. But,· if 
one is concerned with variance component estimation as a means of 
improving the weighting factors employed in a least squares adjust
ment, iteration can be justified by the end result. When the itera
tion converges, assuming that it does, the computed variance component 
estimates will be the same as those used in the least squares adjust
ment. Intuitively, it ls difficult to believe that such consistency 
could result from poorer estimates of the true variances than could be 
obtained with a priori values chosen by guess. 

Numerical experiments wlth simulated data indicate that iteration 
sometimes improves the MINQUE estimates and sometimes does not, but 
whenever there is significant change with iteration, it is in the 
direction of the true values. While it is dangerous to generalize 
from a small number of experiments, it appears that iteration ls not 
likely to contaminate the estimates and has the potential for improv
ing them significantly. 

These experiments produced another result that was quite interest
ing. In all cases, except one, in which MINQUE produced a negative 
estimate for one or more of the variance components, these estimates 
became and remained positive after one or two iterations. The only 
exception was a case in which the S matrix in the estimating equations 
was very ill-conditioned. Hence, unlike MINQUE, iterated MINQE ls not 
likely to produce negative estimates. However, the already substan
tial computing task required by MINQUE is increased by a factor of at 
least two with iteration. 
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Since the property of unbiasedness may be lost anyway, the simpler 
AUE estimator is an advantageous alternative when employed in an 
iterative process. Rather than assuming a single proportionality 
constant, as in the derivation of AUE. we use a separate unknown 
variance factor for each variance component. With this modification 
eq. <9> can be written as 

= f 1 trCR Hi R H1> + ••• + fk tr<R Hi R Hk> Cll> 

From the idempotency of RH. 

<12) 

and eq. (11) is unchanged when written in the form 

ECYT R H1 RY> •~fl tr<R H1 R HJ> + fi trCR H1> 

- f 1 ~ tr<R Hi R HJ> 

= f 1 tr<R H1 > + r Cfj - f.> trCR Hi R Hj> C13> 
j=l l 

Hence. the AUE of the variance factor. rather than the variance com
ponent. can be written 

fi - CYTR Hi R Y>ltrCR Hi> (14) 

which provides an estimating equation of the form of eq. <S>. but with 
a diagonal coefficient matrix requiring the traces of simpler matrix 
products. 

Equation C14> may be a crude approximation if the initial estimates 
are not nearly proportional to the true values. as assumed ln the 
derivation of AUE. However. the bias terms are fractions <usually 
small> of differences between variance factors. Upon iteration. all 
estimates of the variance factors approach unity and the bias terms. 
given in the summation. vanish. The rate of convergence will obvious
ly depend on the initial estimates. but a choic~ of unity for all 
starting values produces satisfactory estimates after a few itera
tions. 

IAUE <Iterated AUE> will not produce negative estimates and does not 
require the matrix S. But a more significant advantage is its facility 
with sparse matrix adjustments. 

In nearly all geodetic adjustments the weight matrix is either 
diagonal or block diagonal. This allows the observation equations to 
be partitioned according to the dimensions of the diagonal blocks of H 
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and processed in batches so that computer storage is substantially 
reduced. Furthermore, the normal equation coefficient matrix is usu
ally sparse so that the pertinent covariance elements are obtainable 
without inverting the wh-0le matrix. 

Consider the matrix equation 

r -H A 1 r Z 1 r v 1 
I I I I = I I (15) 
l AT O J L X J L o J 

The solution produces 

X = N-l AT W Y, 

the least squares estimate for the unknown parameters, and 

Z = -W Y + W A X = -R Y, 

the vector of weighted residuals. If this vector is computed an 
element at a time, or using whatever partitioning was employed in 
forming the normal equations, the quadratic forms required for AUE can 
be accumulated an observation at a time, if the H are diagonal. 

The inverse of the coefficient matrix in eq. (15) is found to be 

-1A ,-1r -H r -R W A N 1 
I I = I I (16)

-1AT N-l AT WL 0 J L N J 

Assume that this inversion is accomplished using the same parti
tioning employed in forming the normal equations. This procedure is 
relatively inexpensive, but will produce only the diagonal blocks of R 
that correspond to the nonzero elements of the diagonal blocks of H. 
These are, however, the only submatrices of R that are needed to 
compute denominator of eq. C14>. If the weight matrices are diagonal, 
only the diagonal elements of R need be computed and the indicated 
traces can be computed as summations of scalar products. 

TEST RESULTS 

Iterated MINQE and IA~E have been tested on a variety of small 
adjustment problems using both real and simulated data. Simulated 
data that have been contaminated by errors taken from populations with 
known variances provide a simple means of evaluating the estimates 
obtained. An interesting example is a simulated leveling network 
illustrated in figure 1. This network ls assumed to have been obser
ved initially along the 80 dotted line segments at a level of preci
sion represented by a variance of 1.0. Densification of the network 
is assumed to have consisted of observations along the 64 dashed line 
segments with a variance of 0.01, and finally the 48 solid segments 
were reobserved with a variance of 0.0001. 
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Figure 1.--Simulated leveling network observed in three stages. 

Ten sets of simulated data were constructed by adding to each true 
elevation difference a computer generated random error from a popula
tion with zero mean and specified variance. The spread in the vari
ance components was chosen to be large in order to test the ability of 
!AUE to converge under difficult circumstances. As mentioned previ
ously, each iteration of !AUE tends to underestimate the spread among 
the corrections to the estimates, so a large spread in the true values 
might inhibit convergence. 

These data sets were used to estimate the variance components in two 
different computer programs: one which uses the method of iterated 
MINQE and one which computes !AUE using the sparse matrix method 
described ln the previous section. In every case a priori estimates 
of unity for all three variance components were used to initiate the 
iteration process. Hence one program produced both MINQUE Cthe first 
iteration> and iterated MINQE, while the other produced AUE and !AUE. 
It is not correct to consider the initial estimates from the IAUE 
program to be AUE estimates, because the starting values in this test 
do not reflect any a priori knowledge of the relative magnitudes of 
the variance components. These columns are included to show that !AUE 
required considerable correction between the first and last iteration 
and to emphasize that AUE should not be used without iteration unless 
good starting values are available. 

In this test, as in all others conducted, the two iterative methods 
converged to the same set of estimates and are, therefore, listed in 
table 1 under a single heading. All methods obtained the correct 
order of magnitude of the largest variance component in all cases. In 
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estimating the two smaller variance components, MINQUE produced at 
least one negative estimate in eight· of the ten tests and two negative 
estimates in four of them. All negative estimates became non-negative 
after a few iterations, however, and finally converged to the correct 
order of magnitude for both of the smaller variance components. 

Table 1.--Comparison of variance component estimation methods 

Data MINQUE AUE Iterated 

Set 2 
al 

2 
a2 

2 
a3 

2 
al 

2 
a2 

2 
a3 

2 
al 

2 
a2 

2 
a3 

1 .981 -.0384 .04505 .695 .153 .277 .981 .0084 .000088 
2 .920 .0274 -.05587 .644 .185 .189 .931 .0072 .000181 
3 .668 .0857 .00042 .482 .186 .176 .783 .0056 .000024 
4 .702 -.0348 .05424 .500 .105 .212 .721 .0071 .000023 
5 .938 -.0030 -.08866 .647 .163 .178 .829 .0073 .000080 
6 1.109 -.0115 -.02336 .777 .192 .265 1.039 .0086 .000094 
7 .764 -.0071 -.00232 .538 .134 .192 .776 .0103 .000084 
8 .914 -.0409 -.04930 .631 .133 .196 .801 .0076 .000020 
9 .512 .0071 • 12099 .382 .107 .212 .659 .0081 .000063 

10 .858 .0111 -.14144 .583 .155 .123 .729 .0042 .000057 
----·------------·----

While the two iterative methods converged to the same sets of esti
mates, there was a large difference in the number of iterations re
quired. Table 2 compares the iteration by iteration estimates for the 
first data set to show the difference in convergence rate between the 
two. The criterion for terminating the iteration process in both 
programs required that the change in all estimates be less than one
hal f of one percent. In general, IAUE required nearly twice as many 
iterations as iterated MINQE, but only about one-fourth as much com
puter time and far less storage. 

Table 2.--Iteratlon by iteration comparison of two iterative 
methods to show difference in convergence rates. 

Iterated MINQE IAUE 

Iteration 2 2 
al a2 

2 
a3 

2 
al 

2 
02 

2
03 

1 .981 -.03841 .0450531 .695 .15315 .2765445 
2 .610 -.03720 .0599775 .810 .03804 . 1052998 
3 .964 -.00024 .0085755 .916 .01002 .0236599 
4 .990 .01086 -.0054678 .975 .00709 .0051580 
5 .903 .01241 -.0002519 .985 .00695 .0021736 
6 .981 .00832 .0000858 .984 .00739 .0010319 
7 .981 .00836 .0000877 .983 .00782 .0004278 
8 .982 .00814 .0001591 
9 .982 .00831 .0000942 

10 .981 .00835 .0000881 
11 .981 .00836 .0000877 

Population 1. 000 .01000 .0001000 1.000 .01000 .0001000 
Sample 1.018 .00756 .0000910 1. 018 .00756 .0000910 

----
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This simulated adjustment produced more negative estimates from 
MINQUE than most of the numerical tests conducted and should not be 
considered a typical example. It was included to show that such 
results do occur. At the same time, and probably for the same reason 
--the large spread in variance component magnitude--both iterative 
methods required more than the usual number of iterations. In most 
tests with both real and simulated data. iterated MINQE converged in 
three or four iterations while IAUE required five or six. 

CONCLUSION 

IAUE provides a convenient method of estimating variance components 
in sparse matrix adjustments. Because it can be employed without 
computing the full inverse of the normal equation coefficient matrix, 
it requires less storage than MINQUE and less computation that iter
ated MINQE. 

Since the regions of convergence have not been established, there is 
always the possibility of encountering problems for which IAUE falls 
to converge, but there are indications that such problems will also 
cause trouble for MINQUE, either in lack of convergence or in negative 
estimates that fail to become positive. Therefore, IAUE provides an 
efficient alternative to MINQUE for sparse matrix applications. 

ACKNOWLEDGMENT 

The author wishes to extend his sincere appreciation to 
R.Adm. John D. Bossler for suggesting this line of investigation when 
he was Director of the National Geodetic Survey. and for his guidance
and encouragement. The author ls also indebted to Mr. Allen J. Pope 
for his many suggestions. 

REFERENCES 

Forstner, W., 1979a: Konvergenzbeschleunigung bei der posteriori 
varianzschatzung, ~~!!!£Dti!! !!t X~tm~!!Yng§!~!~n, 97, 166-172. 

Forstner, W., 1979b: Ein verfahren zur schatzung van varianz- und 
kovarianz komponenten, Al!g!m!!n! X!tm~!!Yng1n2£ht!£n!~n· 85, 
264-269. 

Horn, S. o., R. A. Horn, and D. B. Duncan, 1975: Estimating hetero
scedastic variances in linear models, ~2Ytlli! 2! 1h! Am!r!22n 
§12!!!!!22! A!!22!21l2ll• 10, 380-385. 

Rao, C. R. 1972: Estimation of Variance and covariance components in 
linear models. ~2Yrn2l 2! !b! Am!r!22n §121!!!12~! A!!22!2!!2ll• 
67, 112-115. 

11 



Rao, C. R., 1971a: Estimation of variance and covariance components-
MINQUE theory, ~2Ytni! gf HY!!!!!t!!!! an!!I!i!• 1, 257-275. 

Rao, C. R., 1971b: Minimum variance quadratic unbiased estimation of 
variance components, ~2Ytn!! g! MY!!l!!tl!!! ans!I!l!· 1, 445-
456. 

Rao, C. R. and J. Kleffe,. 1979: Variance and covariance components 
estimation and applications, Qhlg §ts!! Ynl!!t!l!I I!¥hnl¥i! 
B!Q2t! No. 181, Columbus, Ohio. 

Schaffrin, B., 1983: Varianz-kovarianz-komponenten-schatzung bei der 
Ausgleichung heterogener Wiederholungsmessungen, fye!~ QgK C-282, 
Munich, German Democratic Republic. 



U.S. DEPARTMENT OF COMMERCE 
National Oceanic and Atmospheric Administration 
National Ocean Service POSTAGE AND F.:ES PAID 
Charting and Geodetic Services 
National Geodetic Survey, N/CG17X2 
Rockville, Maryland 20852 

U.S. DEPARTMENT OF COMMERCE 
COM-210 

THIRD CLASS 
l1S.MAIL 

® 

OFFICIAL BUSINESS 
LETIER MAIL 


	NOAA Technical Report NOS 111 NGS 33
	PREFACE
	CONTENTS
	ABSTRACT
	INTRODUCTION
	Minque
	ALTERNATIVE ESTIMATORS
	ITERATIVE ESTIMATION
	TEST RESULTS
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES



